N79-72768
Unclas
12711

00/32

LTI-TONE
PART 2
P

OPTIMIZATION OF A VERY LOW
ED DETECTOR,

EL USING A MU
17

-CR-105930)

CAPACITY CHANN
FREQUENCY SHIFT KEY

{Bellcomm, Inc.)

{(NASRA

@
©
'
@
-
<
)
<
-
.
<
@

——— A h 2AAY

BELLCOMM, INC. )
955 UBNFANT PLAZA NORTH, SW. WASHINGTON, D.C 20024

COVER SHEET FOR TECHNICAL MEMORANP

TITLE- Optimization of a Very-Low Capacity ™-69-2034-6
Channel Using a Multi-Tone Frequency
Shift Keyed Detector - Part II paTE- August 11, 1969

FILING CASE No(s)- 900

AUTHOR(S)- 1,. Schuchman
FILING SUBJECT(S)- Communications Through
(ASSIGNED BY AUTHOR(S)- A Very Low Capacity
Channel
ABSTRACT

This paper extends the investigation of lunar-Earth,
planetary-Earth, and deep space low capacity communication
channels initiated by the author in a previous memorandum
titled "Optimization of a Very-Low Capacity Channel Using a

Multi-Tone Frequency Shift Keyed Detector." (TM-69-2034-4,
May 5, 1969)

Two models of phase noise (whose significance is that
it is the defining characteristic of low capacity channels) and
their corresponding derived maximum likelihood detectors are
discussed. The two detectors are defined as the random step
detector and the random linear drift detector. It is argued
that the "optimum" detector will depend upon the degree of
knowledge one has about the statistics and character of the
phase noise and the ability to take advantage of this infor-
mation to produce a realizable and practical detector. Thus
it is shown that a reasonable and practical detector when
little information is known about the phase noise is the
random step detector. If however the phase noise has a linear
drift characteristic which is known statistically then such
information could be used to design a more efficient detector,
the random linear drift detector.
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TM-69-2034-6

TECHNICAL MEMORANDUM

This paper extends the investigation of lunar-Earth,
planetary-Earth and deep space low capacity channels initiated

in a previous paper by the author.l In that paper the optimum
maximum likelihood detector for a signal distorted by phase
noise Oi(t) was described and defined as the random step

detector.* The variate Oi(t) is a stepped approximation to

the actual phase noise and is illustrated in Figure 1.
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Figure 1 - The Random Phase as a Function of Time

*The modulation assumed was M'ary FSK so that i=1, 2,--M.
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The key assumption made was that the set {Oij}

variates are independent and identically distributed.
Section II of this memorandum is a validation of this
assumption.

Section III describes a second maximum likelihood
detector which is defined as the random linear drift detector.
The optimality of this second receiver depends upon a greater
a priori knowledge of the statistical characteristics of the
phase noise than is assumed for the model previously described.

II. THE RANDOM STEP DETECTOR - INDEPENDENT Oij's

Intuitively one feels that the set {Oij} must be

correlated. However any attempt to model the phase noise
with a correlated set of {Oij} results in a mathematical

complexity which implies an extremely difficult detector reali-
zation. Thus attempts to model Oi(t) as a first order Markov

process generally do not lead to satisfactory results. This
can be seen in Appendix A where such a Markov model is described.

Since one cannot model the phase noise assuming
correlation in the set of Oij's, and derive a realizable

receiver and since it is believed that the Oij's are indeed

correlated, of what value is the derived detector for which an
independent set of Oij's was assumed? To answer this question

one can logically argue in the following manner.

If phase noise exists and its bandwidth (B) is
measurable, then the minimum number of variates in the set
{Gij} is approximately determined by such a measurement. Thus

since j varies from 1 to L-1 the minimum value of L is deter-
mined by L_. . = ¢ V TB where T is the time duration of a
minimum =
transmitted M'ary symbol and B is the rf bandwidth. Thus any
increase in L, or corresponding widening of the detection band-
width, would not result in any improvement in the detection of
the phase noise signal but would rather lead to a degradation
in performance. This is analogous to th2 use of frequency diver-
sity to combat a multiplicative noise in that an optimum diver-
sity value (maximum value for transmission bandwidth) exists
which minimizes the effect of fading. Any additional increase




BELLCOMM, INC. - 3 -

in diversity results in a degradation caused by the increase
in additive thermal noise accompanying the increase in the
transmission bandwidth. This phenomena is depicted in
Figure 2.

Si nal
Noise
a4
ay < a, < ag < a,
a3
a, ‘
I
al |
|

b

2 % TB

Figure 2 - Variation of the ratio of received signal to
noise power with L (probability of bit
error = constant)

In addition note that as the phase noise bandwidth
increases the signal is increasingly distorted and the value of
2 increases so that the performance is degraded. This is
graphically depicted in Figure 3.
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Figure 3 - Relative Performance of the Random Step
Detector
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If one refers to the previous companion memorandum,
it is seen that each of the set of i measures (i=1,2,...,M) is
computed from the weighting of L noncoherent matched filter
energy measures, each having been integrated over a mutually
exclusive time interval t (where Lt = T). The i measures are
then compared with a decision made that signal k was transmitted

if the k™™ measure is the largest. Now if such a receiver is
used and a signal is transmitted in which the set of {Oij}

variates are not independent the performance of the receiver
will be identical to one where the set of {Oij} variates are

truly independent. This is easy to show since each of the L
energy measures computed and weighted to form each of the M
compared decision measures is independent of the phase infor-
mation (as are the weighting factors).* Thus one can conclude
that this receiver acts as an upper bound in performance since
if one could realize a receiver for a correlated set of ei.'s

then one would expect such a receiver to make use of such corre-
lation information and to perform better than a receiver which
throws such information away. (By the same reasoning one would
expect a coherent receiver to perform better than a noncoherent
receiver in additive white Gaussian noise and it does.)

It is concluded, therefore, that if the exact phase
noise structure is not known but only the phase noise bandwidth
prudence dictates that one design a receiver that does not
require the phase noise structure for its operation and whose
performance we can predict. In addition it is equally reasonable
to use the receiver described in Reference 1 since it is the
optimum of such realizable receivers.

*Note that not all noncoherent detectors eliminate phase
information. For example if an optimum noncoherent detector
(thermal noise only) were used, and the signal transmitted did
in fact possess phase noise the compared energy measures would
in this case be functions of the phase noise parameters. Thus
the performance of the detector under thermal noise conditions
would not bound the performance when the signal was corrupted
by both thermal and phase noise.
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This section is ended with the following* observation.
The quadrature detector has been shown by Ferguson? to be in
the limit the optimum detector for small predetection signal
to noise ratios for several different models of the phase noise.
However the generalized form of the gquadrature detector is
such that M decision variables {zj} are formed by obtaining

+4- o0
z, = a (w) p(m—wj)dm (1)

- 00

where j =1,2,...,M.

a(w) is a spectral coefficient defined by

T 2 T 2
;(t)COSwtdt + j’ §(t)sinw(t)dt
0 0

Q(t) is the received signal plus noise, i.e., ;(t) = x(t)+n(t);
w is the frequency at which a(w) is evaluated. The signal is
x(t) and n(t) is white Gaussian noise.

a(w)

p(w—wj) is a specific spectral weighting function
centered about the frequency wy the jth tone.

T is the length of a transmitted M'ary symbol.

Now note the following. If p(w-mj) = §(w-w.),
where §(w) is the Dirac delta function, equation (1) reduces

*It was shown that for many real applications very small
predetection signal-to-noise ratios may be ar unrealistic
assumption to make about a low capacity channel.




BELLCOMM, INC. - 6 -

to the standard optimal noncoherent receiver for the no phase
noise case. Thus the structure of the receiver in the presence
of phase noise is dependent on the p(w—wj) weighting functicn

which in turn is dependent upon the knowledge of the noise. If
little is known about the noise it is reasonable to assume p(w)
to be uniformly distributed and this is precisely what has been

done.2 Thus an analogy in assumptions between the correlation of
the @ij's for the random step detector model and the form of the

weighting function p(w—wj) for the spectrum analyzer exists.

IT1I. THE RANDOM LINEAR DRIFT DETECTOR

In the last section it was argued that if only the phase
noise bandwidth is known, the use of the optimum conservative
detector is the most reasonable approach to take.

There may exist however more information about the phase
noise than just its bandwidth. In such cases the design of a
receiver based upon a random step approximation to the noise would
be overly conservative. Unfortunately, as has been shown in Appendix
A, knowledge of the noise cannot easily lead to a practical realiza-
tion of the maximum likelihood receiver. However there are a few
exceptions. Modeling the phase noise as a random linear drift
detector is one such exception and is developed in this section.

The phase noise for this model is assumed to have a
linear drift rate over a transmission symbol period T. What is
not known is from what point in the phase domain the drift starts
in each transmission symbol. The drift rate is also assumed
unknown. A sample waveform of such a process is shown in Figure 4.
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Figure 4 - The Drift Phase Noise Model
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The detector for the phase noise model described
in Figure 4 is derived in Appendix B*, under the assumption
that the drift rate is known except for sign information.

The resultant detector computes M measures {yk} and decides
that the signal transmitted is

max{yk} k=1,2,...,M

where Yi is given by

Yk T 1Ykt 2k (2)
and where
M(zki) Zy g = 3.75
ik = i=1,2
N(Zkl) Zp g 3.75

M(Zki) =1+ 3.5156229n2 + 3.0899424\14 +

1.2067492n% + 2.659732n° +

03607681%° + 0045813012

*In Appendix B we make use of a stepped approximation

to the slope assuming that every t seconds the slope increases
by a factor Ao.
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N(zki)== [3984228 + .0398802471-“1 - .0036201871-2 +
-3 -4 -5
.00163801n - .01031555n + .02282967n
-6 -7 -8
.02895312n + .01787654n - .00420059n .
ezki
1/2
z
ki
where
n = 2../3.75
22 is given b
ki g Y
FIJ 2
2 _ ._ gy i L
Z s = Z Eklj cos (j=1)r0 + (-1) U253 sin(i l)Ae] +
j=1
- (3)

2

L

2i+1 . . .
Z [(—l) %14 sin(j-1)a0 + %23 cos (J l)Ao]
tyng

(-

=3

and where

jt
U154 = j y(t) cos wt dt
(3-1)

(4)

Jjt
25 = f y(t) sin w, t dt
(§=1)t
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y(t) is the received signal and w, is the transmission
frequency corresponding to the kt symbol k=1,2,...,M.

Thus the detector generates M quadrature pairs of
a noncoherent matched filter every t seconds for L such inter-
sin {(j-1)Ar0} values to

cos
form the Zp 4 parameters which are in turn weighted to produce

vals, and weights them with the proper

the M Yy Mmeasures used to determine which M'ary symbol was
transmitted.

The guestion remains as to how to determine L. It
would appear that the smaller you make L the better is the
approximation to the linear slope model. Since the linear
slope model is just a model, and since practical limitations
of implementation must be considered, the value of L would
have to be determined experimentally.

The assumption of a near constant known slope (except
for its sign) appears to be unrealistic in that if one could
know such information then one would use a coherent detector.

To extend the result it is assumed that the drift of the
receiver is random, or in our model of a stepped approximation
to the slope, that A0 can vary from -n to m. Then we need only
require that 40 be known statistically rather deterministically.
Thus if the density distribution of A0 for a given value of L
(p(a6/L)) could be determined experimentally then using equation
(2) the yk(L) measures are given by:

L
Yy (L) = [lyk(AG,L) + 2Yk(A@,L)] p(20/L)d(20) (5)
0

Although this is difficult to do analytically it is

easy to do numerically. , s ”
:,‘// T -

2034-1LS-3f L. Schuchma
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APPENDIX A

PHASE NOISE MODEL I - NONINDEPENDENT @ij 's

The joint density distribution for the 0. J's will

be assumed to exhibit a first order Markov property so that
we may write

p(el,ez,o3,...,ei) = p(Ol)p(Oz/Ol)p(G3/Oz),...,p(Oi/Oi_l) (A-1)

This is a natural and simple extension of the model
which assumes the set of Oij's are independent. Two models of

the conditional density p(0i+l/@i), i=1,2,...,L-1 are used.
These are described below.

p (0341105
P(9i+1|.9i)
1
2(1-p)m
[ -*O +7r] 2'n (l—p) [ Jl
li(l p ]
oi—(i-p)w 0 Oi+(1—o)w O,-=m 0; O +m
Model a-1 Model A-2

where (0 < p £ 1).
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0, is assumed to be uniformly distributed over a

21 interval.

The procedure followed in the derivation parallels

the one used in Appendix A of Reference 1 so that only a
minimum number of statements are made in this derivation.

It is thus easy to show that one need calculate M conditional

probability density distributions p[y(t)|m ] where ply(t)

lw, ]

is the probability density of the received signal y(t) assuming
that signal 2, (2=1,2,...,M) was transmitted. This probability

can be written conditionally as

p[y(t)|w2] = ‘[- p(y(t)lwg,el,ez,---,GL) - ple)) -
{0.}
1

p(0,/07) 4. p(Og/0; ;) dlo;}

Letting L=2 and using model A-1 and the assumption that
y(t)=x(t)+n(t) where x(t) is the signal and n{(t) is white
Gaussian noise leads to

O+1r(l-p) _
12cos(®l+ﬂl) a2£c05/92+822) d@ld@2
p(y(t)[w ) 2 (1-p)

-ﬂ(l-o)
where
1/2 1/2
o m i B [t e o]
18 0 L 1 i J
[o 0%
B - tan—l 122
1 ile
the o.., 's are defined in equation (4) of the paper.

ije

(A-2)

(A-3)
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Expanding exp[-azzcos(02+r22)] in a Bessel series
and integrating and then expanding exP[_“QCOS(61+le)] in a

similar Bessel series, rearranging terms, and integrating
leads to

p(y(t)|w2) = Io(all)IO(QZQ) +

. Fkn(l=-p) . _ _
2 2: Ik(all)lk(a22)[Sln[EFTT:ET]] cosk(le BlQ) (A-4)
k

where Ik(B) is a modified Bessel function of the kth order and

of argument 8.

In a similar manner we find that for model A-2
p(y(t)/wl) is given by

p(y(t)/wz) = Iglay,)Igla,,) +

ﬂ(i-p) Z Iy (g ) Iy (o ) [coskBy =8y, 11 « blp)  (A-5)
k=1

where

i /1-
b(p) = f ‘%’p ° cos k u du

0
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Note that for both models when p=0

p(y(t)/wz) = IO(all)IO(GZQ) (A-6)

and when p=1

p(y(t)/wl) = Io(ap) (A-7)

where

T 2 T 2
af = jr y(t)COsz+dt + y(t)sinw2+dt
0 0

To derive equation (A-7) we used the identity

IO(W) = Io(zl)IO(zz) + 2 E: (-l)nIn(zl)In(zz) cosné¢
n=1

where
_ 2 2 _ 1/2
W = (z1 + z, 2zlzzcos¢)

If the value of p lies between zero and one the infinite
summations in both equations (A-4) and (A-5) do not reduce. Thus
even for the case of L=2 the receiver is quite complex. It is
easy to show that this complexity increases nonlinearly with L so
that realization of a detector for L=3 appears impossible for
arbitrary values of p.
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APPENDIX B

PHASE NOISE MODEL II

(A0 assumed known)

In this Appendix as in the previous one we have that
oi(t) is a first order Markov process so that

p(ellezl~ o 192) = p(Ol)p(Oz/@l) reee ,p‘(OL/OL_l)
where
p(0;/0; 1) = 8(0,-(0,;_,+20(sqnae)) p(sgnae)

i=3' 4, -oo’L

p(ezlol) = 8(0,~(0,+20(sqnae))) p(sqnae)

p(sgnao) % § (sgnae-1) + % s (sgnae+l)

and <N is assumed to be uniformly distributed.

Thus the conditional densities are given by
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p(y(t)|w ) ﬁ exg{ Z lmcos‘_is +sgqnAo [i- l]Ae}cosel +

ZaizsinEil + [sgnae] [i—l]A@}

8 (sgqnae-1)
2

+ d(sqg *+1) de, dsqnae

which can be written as

Iolzyq) + Ip(z5)

P(y(t)lwz) =

where zfi is given by equation (3) of the text.

Expanding the Bessel function in a polynomial as

(B-1)

(B-2)

described in Reference 1 leads to equation (2) of the text.



